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Abstract

We are fortunate to be living in an era of twin biomedical data surges: a burgeoning repre-

sentation of human phenotypes in the medical records of our healthcare systems, and high-

throughput sequencing making rapid technological advances. The difficulty representing

genomic data and its annotations has almost by itself led to the recognition of a biomedical

“Big Data” challenge, and the complexity of healthcare data only compounds the problem to

the point that coherent representation of both systems on the same platform seems insuper-

ably difficult. We investigated the capability for complex, integrative genomic and clinical

queries to be supported in the Informatics for Integrating Biology and the Bedside (i2b2)

translational software package. Three different data integration approaches were devel-

oped: The first is based on Sequence Ontology, the second is based on the tranSMART

engine, and the third on CouchDB. These novel methods for representing and querying

complex genomic and clinical data on the i2b2 platform are available today for advancing

precision medicine.

1. Introduction

It is of great importance that we find ways to integrate large datasets of various measured

information on the same patients (e.g., clinical and genomics), both to define the broad land-

scape of human disease and to give us specific insights into individual differences that thwart

our attempts to treat our patients.

On the one hand, driven by the need to make healthcare delivery accountable and measur-

able, increasingly large fractions of data acquired during the course of clinical care are now

stored electronically. These are in textual notes, imaging studies, and codified data such as lab-

oratory, medication, and diagnostic codes documenting all the paid health encounters of the

individual. For some patients these studies can grow to be hundreds of gigabytes and yet for
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medical, legal, as well as clinical performance these records have to be maintained and avail-

able for millions of patients in the national healthcare system for many years, depending on

applicable local or national regulations [1]. Although healthcare reimbursement might be the

primary driver of the accumulation of these data, it has become clear over the last decades that

these data can be repurposed for a variety of studies, ranging from genetic epidemiology of dis-

eases [2], to teasing apart the pathophysiological substructure of conventional diagnostic cate-

gories [3], pharmacovigilance [Vioxx, Avandia], all the way to quality improvement efforts. In

aggregate, these healthcare data represent hundreds of petabytes and are expected to grow by

two orders of magnitude within a decade [4]

Concurrently, as testimony to the achievements of sequencing technology, the number of

genomes sequenced has gone from one to thousands within 15 years [5]. Already the value of

such sequencing is evident in cancer diagnosis and management [6], as well as the evaluation

of rare and undiagnosed diseases [7]. Therefore, within the next one to two years we can expect

to have well over 100,000 genomes sequenced. As sequencing technologies continue to evolve

and improve, so do the bioinformatics pipelines for their analysis. For these and other reasons,

there is a significant and understandable benefit to keeping the primary read data or alignment

files. Moreover, as it is becoming clear that somatic genomes are not invariant, they may be

repeatedly re-sequenced, further increasing the amount of genomic data available per individ-

ual, pharmacogenomics [8], patient safety [9], and the pathophysiological substructure of con-

ventional diagnostic categories. As a result, the generation of an exabyte per year of genomic

data within the next two years appears inevitable [10].

It is not wholly a coincidence that at the time of the emergence of these large sources of

data with complementary views of human health status there emerged a National Academy of

Science report entitled “Precision Medicine” [11]. The technological infrastructure to imple-

ment a nationally-scaled Information Commons, called for in the Precision Medicine report,

has been slow in coming. This is mostly because there have been more than enough infrastruc-

tural and scientific challenges for the clinical informatics community and the genomics com-

munity to each stay within its sandbox, managing their own data tsunami. The crosstalk

between the two sandboxes has been minimal. For example, each genome-wide association

study usually examines a handful of phenotypes at a time, while clinical studies often consider

a small number of genes or gene variants. This has begun to change with studies driven by

electronic health records linked to genome-wide data [12–14]. Therefore, we evaluated the

readiness of the informatics community to understand and address the issues explained above

in a common platform, described below.

A widely used platform for extracting, integrating, and analyzing data from electronic

health records, registries, insurance claims, and clinical trials is the Informatics for Integrating

Biology and the Bedside (i2b2) project [14]. The i2b2 open source software has been deployed

in over 140 academic health centers in the United States, and across the majority of the Clinical

Translational Science awardees [15]. It has also been adopted in 20 academic health centers

outside the United States [8,16]. The challenge is how to use the i2b2 platform to create que-

ries—from a simple user interface—that span across both phenotypic and genotypic variables.

For example, we would expect, at the very least, investigators to be able to issue queries such as

“find all patients with autism and inflammatory bowel disease but no seizure disorder, carrying

SHANK3 nonsense mutations.” Similarly, queries for males with non-synonymous variants in

the first exon of all genes in the chemokine KEGG pathway, presenting with rheumatoid

arthritis first diagnosed between the ages of 20 and 30, would need to be composed and run

quickly enough atop a system capable of managing millions of patients with billions of

observations.

Combining clinical and genomics queries using i2b2 – Three methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0172187 April 7, 2017 2 / 16

includes the necessary extract, transform, and load

scripts, and the documentation. https://github.

com/hms-dbmi/HMS-DBMI-transmartApp - this is

a software repository for the "i2b2/tranSMART

Approach." It includes the i2b2/tranSMART

software. https://demo-ngs.hms.harvard.edu - this

is where the software demonstration of the "i2b2/

tranSMART Approach" is located. http://www.

biomeris.com/index.php/en/tasks/bigq-ngs-en- this

is a software repository for the "i2b2+NoSQL

approach." It includes the necessary extract,

transform, and load scripts, the software, and the

documentation. http://www.biomeris.com - this is

where the software demonstration of the "i2b2

+NoSQL approach" is located".

Funding: This work was funded by: National

Human Genome Research Institute RO1

HG009174-01, SNM; National Institutes of Health

Centers of Excellence for Big Data Computing in

the Biomedical Sciences 1U54HG 007963-01,

SNM ISK; National Institutes of Health through the

NIH Roadmap for Medical Research

U54LM008748 ISK; National Institute of

Biomedical Imaging and Bioengineering

R01EB014947, SNM; Amazon Web Service

Research Grant: EDU_R_FY2015_Q2_HarvardMe

dicalSchool_Avillach, PA; and the Rete Ematologica

Lombarda (REL) biotechnology cluster for the

implementation of genomic analysis and the

development of innovative treatments in

hematological malignancies”, jointly funded by the

Fondazione Cariplo and the Regione Lombardia.

The funders had no role in the study design, data

collection and analysis, decision to publish, or

preparation of the manuscript’.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0172187
https://github.com/hms-dbmi/HMS-DBMI-transmartApp
https://github.com/hms-dbmi/HMS-DBMI-transmartApp
https://demo-ngs.hms.harvard.edu
http://www.biomeris.com/index.php/en/tasks/bigq-ngs-en-
http://www.biomeris.com/index.php/en/tasks/bigq-ngs-en-
http://www.biomeris.com


2. Methods

The approach to data integration in i2b2 is that every concept linked to a patient is an n-tuple

of rows in a common table, where the n-tuple is a specific combination of data attributes repre-

senting a biomedical observation that is called a “fact”. Although the use of the term “fact”

sounds definitive, it is actually used to indicate that they are rows in a “fact table”, a term of art

used in dimensional data modeling, and more specifically in the Start Schema as defined by

Ralph Kimball [17]. In the Star Schema representation of data, a successful integration strategy

requires representation of all data as composed of the atomic “facts” linked to a patient, in the

case of Healthcare [14].

We focus here on the challenge of multi-domain concept representation in the form or

facts in a “fact table.” In most biomedical applications, the domain of concepts requires repre-

sentation at many levels of granularity (e.g., a tissue culture, the organisms isolated, the antibi-

otics tested on each of the organisms), and modifiers (which tissue was cultured) and values

that may accompany them (specific organismal antibiotic sensitivities). In an i2b2 system, this

is usually done in a pre-defined fashion, and a list of what concepts are available to associate

with each patient is represented, and visually presented, as a hierarchical “tree” of concepts.

We present here the response of members of the i2b2 community [18] to develop a geno-

mic-phenomic query capability within the dimensional integration framework described

above. Three groups agreed to contrast their approaches using a common task and dataset to

illustrate their specific approaches and tradeoffs. Tasks were generally compared using similar

hardware on machines with quad processors, 8 GB of RAM, and either Oracle11g or SQL

Server 2008 databases connected through a Storage Area Network (SAN).

2.1. The common task

Whole exome SNPs and indels were extracted from The 1000 Genomes Project’s Phase 1 Inte-

grated Release [19] using The Genome Analysis Toolkit [20] and annotated using ANNOVAR

[21]. Cellular phenotype data collected on the same individuals were obtained from Wu et al.

[22]. The teams were then asked to apply their method to answer the following basic use cases:

1. Which individuals with a lower mode of HLA-DQB1 protein levels (i.e., HLA-DQB1 log

protein ratio < 0) have missense or nonsense mutations in that gene?

2. How many individuals with log HLA-DQB1 protein ratio < 0 have probable damaging

missense mutations in that gene, as determined by PolyPhen-2 [23][24]?

3. How do the above answers change if we select just YRI (Yoruban) or CEU (European

individuals)?

4. How many individuals carry variants previously implicated in hypertrophic cardiomyopa-

thy, but recently found to be quite prevalent in normal populations [25]?

3. Results

The three groups developed distinct approaches (Fig 1) to integrate the phenome-genome data

represented on the i2b2 platform. Each of these integration strategies correctly answered the

four use cases above, as validated using traditional Bash scripts.

3.1. i2b2 approach using the Genomic Sequence Ontology

Briefly, data is essentially organized in i2b2 in what Medical Informatics Specialists would rec-

ognize as a modified Entity-Attribute-Value format (EAV) [26] with the Entity not as a simple
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item, but in the healthcare context includes the patient ID, the encounter ID, the observer ID,

and the date on which the observation was made. Comparing to the EAV model, the attribute

is equivalent to the concept ID that represents a specific annotation being made related to the

Entity, such as the recording of an ICD9 code. The value can be implicit (a value of “true”) for

some rows, but for concepts such as laboratories of chromosome position is a critical part of

the specification. Rows can be related to each other with an “Instance ID” that can relate sev-

eral rows together and make them an n-tuple of rows. This approach to data representation

has been described in i2b2 [14], and what follows is its application to the representation of

next generation sequencing (NGS).

In order to represent variant recognized by next generation sequencing in i2b2, the ontol-

ogy needs not only be sufficiently expressive to represent the variant data, but also the repre-

sent the specific values which may accompany the NGS concepts (such as RS number for a

variant). We chose to use the Sequence Ontology [27] and organize it as a collection of con-

cepts that describe the variant type (SNP, deletion, insertion etc). In addition, we allocate a fea-

ture_variant (stop_gained, non-synonymous, frameshift variant, etc.) of the Sequence

Ontology for use as modifiers to the variant types to further qualify aspects of the variant con-

cepts of interest.

In making the link between the Sequence Ontology and the variant data file (VCF), we

make use of the fact that the Sequence Ontology is directly correlated to the Genome Variation

Format (GVF) [28]. First, each VCF file is processed with ANNOVAR. We then created a

script to transform the ANNOVAR output to GVF. Once the data is in GVF format, we can

assign SO concepts and modifiers to describe each variant. Another script converts the GVF

Fig 1. Overview of the three different approaches. 1) Using i2b2 by adding patient facts that have concepts coded per the Genome

Sequence Ontology, 2) using i2b2/tranSMART by adding patient facts represented by a unique ontology allowing greater variant

exploration, 3) using i2b2 by generating a patient set from i2b2 Star Schema database contained phenotypes and then using an alternate

NoSQL-NGS variant storage to complete the genomic part of the query.

https://doi.org/10.1371/journal.pone.0172187.g001
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output to I2B2 facts described by SO concepts and modifiers. In the conversion process, each

individual’s genomic data file is represented as a single encounter. Each variant in the genomic

data file is assigned a concept and a collection of modifiers organized by instance number

within that encounter. For example, for the Common Task to be performed, each individual’s

observed variant would need to be at least a six-tuple of rows: one for variant type (SNV, etc),

one for feature (exon), one for function (non-synonymous, etc.), one for gene name (HLA-

DQB1, etc.), one for dbSNP RS number, and one for PolyPhen HDIV score. The scripts to per-

form these transforms can be found at the web site: https://community.i2b2.org/wiki/display/

GIT/Home. The classic i2b2 phenotypic ontology was additionally augmented to include pro-

tein levels and population demographics (CEU, CHB, YRI) specifically to enable the Common

Task.

3.1.1. Accomplishment of the common task using the i2b2 approach. Upon logging

onto i2b2, the researcher is presented with demographic, phenotypic and genomic characteris-

tics on the left and a query panel on the right. Concepts of interest are dragged from left to

right to generate a query. A query is composed by constructing a Venn Diagram out of the

square groups on the query panel, where items placed in the same group are logically ORed

together and items placed in different groups are logically ANDed together [14]. The query

composition for the Common Task Use Case 1 is shown in Fig 2. It shows the HLA-DQ1 pro-

tein level placed in panel one with the value specified as<1, genomic variant functions in

panel two that modify the SNVs on the gene of interest in panel three. Panels two and three

are specified to occur in the same observational instance, that is, to be part of the same n-tuple,

i.e. all regarding the same patient variant. From here the query can be expanded for use cases

2–4 by adding to a panel the Polyphen scores, population demographics and/or dbSNP con-

cepts specified with RS number values.

In i2b2, the queries are generated ‘on the fly’ and can find patients with any number of

genomic concept and modifier combinations. Queries can all be performed in real time with

an average compute time of 3–4 seconds on SQL Server 2008 hardware platform described

previously. This flexibility does come at a price, however. Due to the nature of the data repre-

sentation, each supported variant modifier results in an additional row in the observation fact

table.

An online demo website is available at: https://www.i2b2.org/software/. Supplemental doc-

umentation, software, data packages and scripts can be found at https://community.i2b2.org/

wiki/display/GIT/Home.

3.2. i2b2/tranSMART approach

i2b2/tranSMART is an open source knowledge management platform that enables scientists to

develop and refine research hypotheses by investigating correlations between disparate data

sources [29]. This open source platform is an i2b2 [14] spinoff created in 2008 by Johnson &

Johnson in the context of clinical trials [30]. On top of i2b2, the tranSMART application adds

lightweight analytic capabilities, an expandable analysis framework, and many data manage-

ment options.

3.2.1. ANNOVAR output / loading data. Joint variant calling using GATK on the dataset

of 55 whole exomes called 126,413 unique variants. For each variant, ANNOVAR produced 71

annotation characteristics, for a total of nearly 8,975,323 variant annotations. The product of

the ANNOVAR pipeline is two text files, which split data based on the level of information

they represent. The first is a file that gives patient-level information; in this case, the genotype

per variant per patient. The second is a file that contains the variant information on a per vari-

ant basis.

Combining clinical and genomics queries using i2b2 – Three methods
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Owing to i2b2’s flexible and scalable star schema, we decided to forego the addition of new

database tables and, instead, loaded the output of ANNOVAR into the existing patient-con-

cept-fact schema, as in the i2b2 approach using the Genomic Sequence Ontology described

above. To perform this loading, we created a Perl script and associated Perl modules to divide

the ANNOVAR input files into a set of text files that mimicked the structure of i2b2’s schema.

A first pass is made through the input files to gather the unique patient set and distinct attri-

butes that are being observed about those patients. After this is done, unique identifiers are

generated for each of the patients, as well as for the attributes obtained from the ANNOVAR-

derived files. Once this is done, the script generates the intersection of these dimensions, the

i2b2 Observation Fact table [14].

This highly flexible query interface is at the cost of expansion of data that has to occur when

we populate the i2b2 schema. We have facts about both patients and variants that must be

linked to form the complete set of facts. The 9 million variant annotations above, combined

with the genotype data, expand to 71 million facts about the patient set. This increase is caused

by the replication of variant-level data for each patient.

Fig 2. Classical i2b2 user interface for use case 1. Which individuals with a lower mode of HLA-DQB1 protein levels (i.e., HLA-DQB1 log

protein ratio < 0) have missense or nonsense mutations in that gene? The available ontologies are displayed on the left side and the

phenotypic and genotypic concepts used to build the query are shown on the right.

https://doi.org/10.1371/journal.pone.0172187.g002
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This approach of creating text files per database table and generating unique IDs externally

allowed us to use Oracle’s loading tool, SQL�Loader. The data are loaded directly into tables

queried by the i2b2/tranSMART application without the need for expensive database mainte-

nance operations. Due to the fact that the Oracle indexes are not updated as data are added,

there is a time penalty required to rebuild the indexes after the data load.

Our completion of the Common Task demonstrates that a relational data store can be used

to house whole exome sequencing data. No counts or aggregations had to be precomputed,

and selection was done in real time.

3.2.2. Accomplishment of the common task using i2b2/tranSMART approach. A

power of the i2b2 schema is that no further work needs to be done to answer a variety of que-

ries after the variant and phenotype have been loaded. There is no need to write any code for

the different queries. The basic workflow involves researchers logging into i2b2/tranSMART

and navigating to the Dataset Explorer webpage (Fig 3, Panel A). Here, they are presented an

Fig 3. Panel A: Designing a query in the i2b2/tranSMART interface using phenotypic and genomic variables. Use case 1: Which individuals with a

lower mode of HLA-DQB1 protein levels (i.e., HLA-DQB1 log protein ratio < 0) have missense or nonsense mutations in that gene? Panel B: Results of a

query in the i2b2/tranSMART interface using phenotypic and genomic variables. Use case 1: Which individuals with a lower mode of HLA-DQB1

protein levels (i.e., HLA-DQB1 log protein ratio < 0) have missense or nonsense mutations in that gene?

https://doi.org/10.1371/journal.pone.0172187.g003
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ontology tree on the left hand side of the page with a set of input boxes on the right hand side.

Expanding the tree to their term of interest, the user can drag and drop the item from the

ontology tree into an input box. In this way, a user specifies criteria for the patient set that i2b2

will generate.

I2b2/tranSMART was expanded to create an aggregation tool we labeled ‘Generate WES

Statistics’. This functionality allows the user to see a count of the patients who meet the criteria

they specify within the input boxes. It also allows for the quick generation of graphs that can

demonstrate the distribution of values within a patient-level variable or quickly provide statis-

tical tests like T-test and Chi-square (Fig 3, Panel B).

Using the above workflow, we can generate the counts required for the questions outlined

in this paper. To address the queries, we create two subsets of patients. The first subset is

comprised of individuals with missense or nonsense variants nearest HLA-DQB1 and an

HLA-DQB1 ratio of less than 0. The second subset includes patients with the same variant cri-

teria, but with an HLA-DQB1 ratio of greater than or equal to 0.

Clicking our ‘Generate WES Statistics’ button will return both patient counts in less than 10

or 20 seconds, depending upon the use case.

Adding the Polyphen2 score criteria is as simple as navigating away from the analysis screen

and back to the input boxes. We drag the Polyphen2 score from the tree and specify the cutoff

in each subset. Clicking ‘Generate WES Statistics’ again will give us these further refined

counts.

The next step highlights one of the areas that differentiate i2b2/tranSMART from the other

i2b2 approaches. When we wish to view the breakdown of patient counts in different popula-

tions, we can simply drag and drop the population folder from the ontology tree into the analy-

sis tab. This action generates a bar chart with patient counts for each population (Fig 4). A

Chi-squared test is automatically run as well to let us know if the distribution between the cate-

gories is statistically different across the two subsets. In other i2b2 instances, the counts would

have to be derived through several successive patient count queries, where i2b2/tranSMART

allows it to be generated in one drag, thus taking less time for this simple initial query with sta-

tistical tests returned.

The drag and drop interface makes it trivial for a less computationally savvy user to gener-

ate aggregated counts and statistics. Direct access to the database is available for power users

who want to conduct more advanced analytical techniques like a Phenome Wide Analysis [8].

A Public i2b2/tranSMART Application code [30] and Extract Transform Load (ETL) [31]

GitHub repositories of Harvard Medical School’s Department of Biomedical Informatics are

available https://github.com/hms-dbmi with a demonstration instance at https://demo-ngs.

hms.harvard.edu.

3.3. i2b2+NoSQL approach

The i2b2+NoSQL approach extends the i2b2 platform [32] in order to query both phenotype

and genotype data by using two databases: the standard i2b2 warehouse to store phenotypes

and CouchDB [33], a NoSQL document store for genetic variants.

The main features of this approach are:

1. The flexibility and scalability provided by NoSQL databases in general and by CouchDB in

particular. CouchDB is based on a schema-less data model; it stores one JSON document for

each patient’s variant containing all the associated data. Moreover, it scales very well when

the data volume increases [34].

2. Very fast query times, provided by an indexing system built on the JSON files.
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3. The automatic creation of JSON files from a set of multi-sample VCF files.

4. The opportunity to separately tune the two databases, given the uneven nature of the data

they are entrusted to manage.

The system is thus based on two parts: data annotation/upload and data query.

3.3.1. Data annotation/upload. The first part of the system is devoted to data annotation

and upload (Fig 5). The VCF files are processed with ANNOVAR, and standard output files

are obtained. The annotated output, in the standard comma-separated values format, is then

parsed in order to create a JSON document for each variant belonging to a single sample.

Such JSONs files are based on an object model specifically designed to represent genetic vari-

ants. Finally, the generated documents are uploaded into the NoSQL database. This process,

which consumes time and resources, can be easily performed in parallel on cloud-based

architectures.

One of the main features (and, to some extents, a limitation) of CouchDB is the absence of

a standard query language; the data interrogation process is performed by means of pre-

Fig 4. Display of counts per population in two subgroups in i2b2/tranSMART (use case 3).

https://doi.org/10.1371/journal.pone.0172187.g004
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computed “views”, usually generated when data are uploaded. The main advantage of the

views is that they provide very fast query times. Potentially, all the ANNOVAR features that

characterize the variants can be indexed and queried with a view.

3.3.2. Data query. The second part of the system (Fig 6), which corresponds to the query

process and to the genotype-phenotype integration, has been developed as an i2b2 cell

(BigQ-NGS Cell) which, along with an expansion for the i2b2 Webclient, called BigQ-NGS

plugin, allows exploring the variants associated with a Patient Set obtained with the standard

i2b2 query tools. For the very nature of i2b2, this part of the system is also suitable to be

deployed on a distributed environment.

Fig 5. System components and their inter-relationships. The Data annotation/upload process requires the user to provide one or

more VCF files that are functionally annotated with ANNOVAR and used to create one JSON document for each variant belonging to

a single patient; these JSONs are stored inside CouchDB to be queried by the BigQ-NGS Cell. On the client-side, the BigQ-NGS

Plugin allows the user to create a genetic query with drag-and-drop interactions within the i2b2 Webclient; afterwards the plugin

communicates with the cell to run the query and collect the results that are shown to the user.

https://doi.org/10.1371/journal.pone.0172187.g005
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The basic workflow of the NoSQL approach (Fig 6) starts with the user logging into the

i2b2 Web client and defining the phenotype of interest by dragging the concepts of the ontol-

ogy inside the Query Tool. Once the phenotype is defined, the system generates a patient set

that can be dragged into the BigQ-NGS plugin, which allows selection of the different use

cases.

For each use case, the user is asked to provide query parameters (e.g., the gene of interest

for use case 1). Thereafter, by selecting the View Results tab, the query is performed. The

query process is managed by the plugin with a sequence of calls to the cell that progressively fil-

ter the initial patient set with the constraints of the specific use case. Finally, the cell returns

the list of cases that answers the query. The result shown by the plugin is a table containing the

unique IDs of those cases.

Fig 6. Screenshot of BigQ-NGS Plugin with user interactions highlighted. (1) The user creates a query by dragging and dropping

different blocks inside the plugin’s workspace. Each block represents a query on a single attribute that will be performed by the

NoSQL-NGS Cell. After the blocks are connected to each other, the query is defined. (2) A patient set, previously created with a

standard i2b2 query, is dragged and dropped on the Patient Result Set Drop (PRS Drop) block to define the patients whose exomes

will be queried. (3) By double-clicking the standard query blocks (in yellow), it is possible to specify their query logic and query

parameters. (4) Afterwards, the query process can start, and each block executes its query sequentially, calling the NoSQL-NGS Cell.

(5) When all blocks have performed their query, the user can visualize the results by double-clicking the Patient Result Set Table (PRS

Table) block.

https://doi.org/10.1371/journal.pone.0172187.g006
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3.3.3. Accomplishment of the common task using i2b2 + NoSQL approach. The data

acquisition and annotation phase was executed on AWS EC2 machines [35]; in particular, we

used 6 m1.large [9] machines to run ANNOVAR and 1 c3.2xlarge [36] machine for CouchDB.

To address use cases 1 and 2, we have used the i2b2 Query Tool to generate 2 patient sets

(one with a lower mode of HLA-DQB1 protein and one with an upper mode). Use case 3

requires a finer phenotype definition; the results are 4 patient sets (lower and upper mode of

HLA-DQB1 protein, respectively, for Yoruban and European individuals). Finally, use case 4

is executed on the whole 55-patient set.

The query times achieved by the i2b2+NoSQL approach could all be performed in real time

with a demonstration site located at http://www.biomeris.com/index.php/en/tasks/bigq-ngs-

en and the plugin available at http://www.biomeris.com.

We summarized the merits of the three approaches in Table 1. The combination of geno-

types and phenotypes was achieved in i2b2 though three methods which gave similar perfor-

mance, although the third method required the anticipation of the genotype query so that the

query could be set up in CouchDB.

4. Discussion

Healthcare data integration has been stretched to the limit with an almost continuous stream

of new data elements and relationships. With data ranging from personal health information

to epigenomics, many integration approaches have been undertaken, such as link integration

(in a web-page presentation), view integration (bringing together different databases), data

warehousing (putting data into a common data schema), service-oriented architectures (serv-

ing data dynamically on the web in a common format), and mash-ups (taking data from more

than one Web-based resource to make a new Web application). This plethora of methods

allows flexibility in joining data together in different ways across sources but does not neces-

sarily make the joined data computable or semantically integrated.

Here we describe three different approaches to data integration on the i2b2 and i2b2/tranS-

MART platforms, which allow for semantically integrated data. The first approach, based on

the core i2b2 platform, uses the fundamentally atomic healthcare observation-fact to build out

integrated genomic data in the observation-fact table of the dimensional warehouse. It focuses

on a set of facts that are derived from each VCF file which are completely pre-processed and

produced by a genomic pipeline. The VCF file is divided into discrete facts, each one related to

Table 1.

i2b2 alone with transMart with CouchDB

Flexibility of answering multiple lines of ad-hoc

questions

+++ +++ +

Use of Standard Terminologies +++ + ++

Query performance times +++ +++ ++

Scaling for large Cohort size ++ ++ +++

Adaptive ability for many kinds of Whole Genome

Data

+ ++ +++

Available Database Support Oracle, SQL Server, or

Postgres

Oracle,

Postgres

(Oracle, SQL Server, or Postgres) plus

CouchDB

+++ more,

++ medium,

+ less

https://doi.org/10.1371/journal.pone.0172187.t001
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a patient and a variant type. The variant type is then related to its gene, its protein impact, and

many other such annotations in a n-tuple of rows all of which tie back directly to the patient

and specific variant.

The second approach, which utilizes the i2b2/tranSMART platform, uses a similar observa-

tion-fact at its core, but doesn’t use a standardized ontology to represent the concepts. Rather,

a homemade ontology was created, and all specific features of the data are imported into the

observation-fact table, at a high level of granularity. Statistical tools are available to display the

results.

In the third approach, using a new big-data software module for i2b2, the phenotypic data

are queried using the explicit observation-fact model, but the genomic data are uploaded after

functional annotation with ANNOVAR into CouchDB JSON documents. The patient set with

specific phenotypic characteristics is extracted based upon a query, and this set is sent to

CouchDB through an i2b2 cell, which extracts the annotations joined to the patient set identi-

fied from the phenotyping query.

This work shows that all these models can be supported by the i2b2 platform, but what

makes it different from other platforms such as Biomart [37] or Taverna [38] is that the full

phenome of the patient is available for analysis with the genomic data, unlike these other tools

where the patient phenotype is essentially input at the start of the pipeline as a table of Boolean

values derived from the analysis within a completely different platform. The combination of

genomic and phenomic data is a very important feature of i2b2 and allows much richer explo-

ration of the relationships. Another important feature is the rigor and granularity, in which

the phenome/genome concept is maintained.

An advantage of model #1 is an explicit, standardized, viewable representation of available

genomic data in a terminology tree, such that all levels of these data are guaranteed to integrate

with healthcare data of other types in the dimensional model and is interoperable with other

projects using the standardized Sequence Ontology (http://www.sequenceontology.org/).

However, this takes an extensive preprocessing effort, needs a considerable ontology develop-

ment effort, and presents the researcher with a complicated query construction model. An

advantage of model #2 is that the variant annotations are integrated into the healthcare data

model not as generic modifiers but as special linked variant information by a subtle modifica-

tion to the i2b2 data model. The user interface is more readily available for analysis in making

comparisons between two populations than the standard i2b2 web client tool. An advantage of

model #3 is that all data extraction from VCF files is done as part of generic pipeline to per-

form annotation and generate the JSON documents. This allows new data to be added simply

by adding and replacing JSONs. A robust set of workflows to preprocess data can be supported

in a relatively decoupled manner from the i2b2 environment. The allows the genomic query

mechanism to be loosely coupled to the i2b2 data model, although the coupling does need to

be present through the patient identifier in order to take the patient set generated by the

healthcare data model and propagate it into the NoSQL query.

All of the methods where able to achieve the “Common Task” as defined at the beginning

of the paper producing exactly the same results. The flexibility to query an extremely complex

patient phenotype from the medical record, when coupled by the powerful methods for repre-

senting genotypes as described in this paper, show how the empowered researcher can access

the data in an open and powerful query tool.

Acknowledgments

This work funded by National Institutes of Health Centers of Excellence for Big Data Com-

puting in the Biomedical Sciences (U54), Grant Number U54HG007963, PI’s Kohane and

Combining clinical and genomics queries using i2b2 – Three methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0172187 April 7, 2017 13 / 16

http://www.sequenceontology.org/
https://doi.org/10.1371/journal.pone.0172187


Murphy, funded infrastructure of i2b2 and tranSMART; National Institutes of Health

through the NIH Roadmap for Medical Research, Grant U54LM008748, PI Kohane, funded

infrastructure of i2b2; National Institute of Biomedical Imaging and Bioengineering, Grant

Number R01EB014947, PI Murphy, funded infrastructure of i2b2; National Human Genome

Research Institute, Grant Number RO1HG009174 (NHGRI), PI Murphy, funded infrastruc-

ture of i2b2; Amazon Web Service Research Grant: EDU_R_FY2015_Q2_HarvardMedi-

calSchool_Avillach-NEW, PI Avillach, funded infrastructure of tranSMART.

Author Contributions

Conceptualization: SNM PA RB LP MG AE MTM ISK.

Data curation: PA LP MG AE MTM.

Formal analysis: SNM PA RB LP MG AE MTM ISK.

Funding acquisition: SNM PA RB ISK.

Investigation: SNM PA RB LP MG AE MTM.

Methodology: SNM PA RB LP MG AE MTM ISK.

Project administration: SNM PA RB ISK.

Resources: SNM PA RB MG ISK.

Software: SNM PA LP MG MTM ISK.

Supervision: SNM PA RB ISK.

Validation: SNM PA RB LP MG ISK.

Visualization: SNM PA RB LP MG MTM ISK.

Writing – original draft: SNM PA RB MG ISK.

Writing – review & editing: SNM PA RB LP MG AE MTM ISK.

References
1. Mandl KD, Kohane IS. Federalist principles for healthcare data networks. Nat Biotechnol. 2015; 33:

360–363. https://doi.org/10.1038/nbt.3180 PMID: 25850061

2. Liao KP, Cai T, Gainer V, Goryachev S, Zeng-treitler Q, Raychaudhuri S, et al. Electronic medical rec-

ords for discovery research in rheumatoid arthritis. Arthritis Care Res (Hoboken). John Wiley & Sons,

Inc; 2010; 62: 1120–1127.

3. Kurreeman F.,Liao K., Chibnik L., Hickey B., Stahl E., Gainer V., et al., Genetic basis of autoantibody

positive and negative rheumatoid arthritis risk in a multi-ethnic cohort derived from electronic health rec-

ords. Am J Hum Genet, 2011. 88(1): p. 57–69. https://doi.org/10.1016/j.ajhg.2010.12.007 PMID:

21211616

4. Savaiano J. Bring healthcare’s dark data to light. In: healthcareitnews.com [Internet]. 30 Jan 2013 [cited

20 Nov 2014]. http://www.healthcareitnews.com/news/bring-healthcares-dark-data-light?single-page=

true

5. Stephens Z.D., Lee S.Y., Faghri F., Campbell R.H., Zhai C., Efron M.J., et al. Big Data: Astronomical or

Genomical? PLoS Biol, 2015. 13(7): p. e1002195. https://doi.org/10.1371/journal.pbio.1002195 PMID:

26151137

6. Wheeler D.A. and Wang L., From human genome to cancer genome: the first decade. Genome Res,

2013. 23(7): p. 1054–62. https://doi.org/10.1101/gr.157602.113 PMID: 23817046

Combining clinical and genomics queries using i2b2 – Three methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0172187 April 7, 2017 14 / 16

https://doi.org/10.1038/nbt.3180
http://www.ncbi.nlm.nih.gov/pubmed/25850061
https://doi.org/10.1016/j.ajhg.2010.12.007
http://www.ncbi.nlm.nih.gov/pubmed/21211616
http://www.healthcareitnews.com/news/bring-healthcares-dark-data-light?single-page=true
http://www.healthcareitnews.com/news/bring-healthcares-dark-data-light?single-page=true
https://doi.org/10.1371/journal.pbio.1002195
http://www.ncbi.nlm.nih.gov/pubmed/26151137
https://doi.org/10.1101/gr.157602.113
http://www.ncbi.nlm.nih.gov/pubmed/23817046
https://doi.org/10.1371/journal.pone.0172187


7. Dickson S.P., Wang K., Krantz I., Hakonarson H., Goldstein D.B. Rare variants create synthetic

genome-wide associations. PLoS Biol, 2010. 8(1): p. e1000294. https://doi.org/10.1371/journal.pbio.

1000294 PMID: 20126254

8. Neuraz A, Chouchana L, Malamut G, Le Beller C, Roche D, Beaune P, et al. Phenome-wide association

studies on a quantitative trait: application to TPMT enzyme activity and thiopurine therapy in pharmaco-

genomics. PLoS Comput Biol. Public Library of Science; 2013; 9: e1003405.

9. Avillach P, Coloma PM, Gini R, Schuemie M, Mougin F, Dufour J-C, et al. Harmonization process for

the identification of medical events in eight European healthcare databases: the experience from the

EU-ADR project. J Am Med Inform Assoc. BMJ Publishing Group Ltd; 2013; 20: 184–192.

10. Marx V., Biology: The big challenges of big data. Nature, 2013. 498(7453): p. 255–60. https://doi.org/

10.1038/498255a PMID: 23765498

11. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxon-

omy of Disease., National Research Council (US) Committee on A Framework for Developing a New

Taxonomy of Disease., Washington (DC): National Academies Press (US); 2011.

12. Gottesman O, Kuivaniemi H, Tromp G, Faucett WA, Li R, Manolio TA, et al. The Electronic Medical

Records and Genomics (eMERGE) Network: past, present, and future. Genet Med. 2013; 15: 761–771.

https://doi.org/10.1038/gim.2013.72 PMID: 23743551

13. Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K, et al. PheWAS: demon-

strating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics.

Oxford University Press; 2010; 26: 1205–1210.

14. Murphy SN, Weber G, Mendis M, Gainer V, Chueh HC, Churchill S, et al. Serving the enterprise and

beyond with informatics for integrating biology and the bedside (i2b2). J Am Med Inform Assoc. BMJ

Publishing Group Ltd; 2010; 17: 124–130.

15. Kohane IS, Churchill SE, Murphy SN. A translational engine at the national scale: informatics for inte-

grating biology and the bedside. J Am Med Inform Assoc. BMJ Publishing Group Ltd; 2012; 19: 181–

185.

16. Girardeau Y, Trivin C, Durieux P, Le Beller C, Louet Agnes L-L, Neuraz A, et al. Detection of Drug-Drug

Interactions Inducing Acute Kidney Injury by Electronic Health Records Mining. Drug Saf. Springer

International Publishing; 2015;: 1–11.

17. Kimball R., The data warehouse toolkit: practical techniques for building dimensional data warehouses.

1996, New York: John Wiley & Sons.

18. Community—i2b2 Wiki. In: community.i2b2.org [Internet]. [cited 19 Jul 2015]. https://community.i2b2.

org/wiki/dashboard.action

19. 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al.

An integrated map of genetic variation from 1,092 human genomes. Nature. 2012 Nov 1; 491:

(7422):56–65. https://doi.org/10.1038/nature11632 PMID: 23128226

20. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation dis-

covery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011; 43: 491–498.

https://doi.org/10.1038/ng.806 PMID: 21478889

21. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-through-

put sequencing data. Nucleic Acids Res. Oxford University Press; 2010; 38: e164–e164.

22. Wu L, Candille SI, Choi Y, Xie D, Jiang L, Li-Pook-Than J, et al. Variation and genetic control of protein

abundance in humans. Nature. 2013; 499: 79–82. https://doi.org/10.1038/nature12223 PMID:

23676674

23. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server

for predicting damaging missense mutations. Nat Methods. 2010; 7: 248–249. https://doi.org/10.1038/

nmeth0410-248 PMID: 20354512

24. Lander E.S. Brave New Genome. N Engl J Med. 2015; 373: 5–8. https://doi.org/10.1056/

NEJMp1506446 PMID: 26039524

25. Andreasen C, Nielsen JB, Refsgaard L, Holst AG, Christensen AH, Andreasen L, et al. New population-

based exome data are questioning the pathogenicity of previously cardiomyopathy-associated genetic

variants. Eur J Hum Genet. 2013; 21: 918–928. https://doi.org/10.1038/ejhg.2012.283 PMID: 23299917

26. Nadkarni PM, Brandt C. Data extraction and ad hoc query of an entity-attribute-value database. J Am

Med Inform Assoc. 1998; 5: 511–527. PMID: 9824799

27. Eilbeck K, Lewis SE, Mungall CJ, Yandell M, Stein L, Durbin R, et al. The Sequence Ontology: a tool for

the unification of genome annotations. Genome Biol. BioMed Central Ltd; 2005; 6: R44.

28. Reese M., Moore B., Batchelor C., Salas F., Cunningham F., Marth G., et al. A standard variation file

format for human genome sequences. Genome Biology. 2010 11:R88. https://doi.org/10.1186/gb-

2010-11-8-r88 PMID: 20796305

Combining clinical and genomics queries using i2b2 – Three methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0172187 April 7, 2017 15 / 16

https://doi.org/10.1371/journal.pbio.1000294
https://doi.org/10.1371/journal.pbio.1000294
http://www.ncbi.nlm.nih.gov/pubmed/20126254
https://doi.org/10.1038/498255a
https://doi.org/10.1038/498255a
http://www.ncbi.nlm.nih.gov/pubmed/23765498
https://doi.org/10.1038/gim.2013.72
http://www.ncbi.nlm.nih.gov/pubmed/23743551
https://community.i2b2.org/wiki/dashboard.action
https://community.i2b2.org/wiki/dashboard.action
https://doi.org/10.1038/nature11632
http://www.ncbi.nlm.nih.gov/pubmed/23128226
https://doi.org/10.1038/ng.806
http://www.ncbi.nlm.nih.gov/pubmed/21478889
https://doi.org/10.1038/nature12223
http://www.ncbi.nlm.nih.gov/pubmed/23676674
https://doi.org/10.1038/nmeth0410-248
https://doi.org/10.1038/nmeth0410-248
http://www.ncbi.nlm.nih.gov/pubmed/20354512
https://doi.org/10.1056/NEJMp1506446
https://doi.org/10.1056/NEJMp1506446
http://www.ncbi.nlm.nih.gov/pubmed/26039524
https://doi.org/10.1038/ejhg.2012.283
http://www.ncbi.nlm.nih.gov/pubmed/23299917
http://www.ncbi.nlm.nih.gov/pubmed/9824799
https://doi.org/10.1186/gb-2010-11-8-r88
https://doi.org/10.1186/gb-2010-11-8-r88
http://www.ncbi.nlm.nih.gov/pubmed/20796305
https://doi.org/10.1371/journal.pone.0172187


29. Szalma S, Koka V, Khasanova T, Perakslis ED. Effective knowledge management in translational medi-

cine. J Transl Med. BioMed Central Ltd; 2010; 8: 68.

30. DBMI. hms-dbmi/HMS-DBMI-transmartApp. https://github.com/hms-dbmi/HMS-DBMI-transmartApp

31. DBMI. hms-dbmi/HMS-DBMI-transmartETL. https://github.com/hms-dbmi/HMS-DBMI-transmartApp

32. Gabetta M, Limongelli I, Rizzo E, Riva A, Segagni D, Bellazzi R. BigQ: a NoSQL based framework to

handle genomic variants in i2b2. BMC Bioinformatics. 2015 Dec 29; 16:415. https://doi.org/10.1186/

s12859-015-0861-0 PMID: 26714792

33. Anderson JC, Lehnardt J, Slater N. CouchDB: The Definitive Guide. “O’Reilly Media, Inc.;” 2010.

34. Cattell R. Scalable SQL and NoSQL data stores. ACM SIGMOD Record. ACM; 2011; 39: 12–27.

35. Mathew S. d0.awsstatic.com/whitepapers/aws-overview.pdf. In: d0.awsstatic.com [Internet]. [cited 16

Jul 2015]. http://d0.awsstatic.com/whitepapers/aws-overview.pdf

36. Services AW. AWS | Amazon EC2 | Instance Types [Internet]. [cited 20 Nov 2014]. //aws.amazon.com/

ec2/instance-types/

37. Smedley D, Haider S, Durinck S, Pandini L, Provero P, Allen J, et al. The BioMart community portal: an

innovative alternative to large, centralized data repositories. Nucleic Acids Res. Oxford University

Press; 2015; 43: W589–98.

38. Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, et al. The Taverna workflow suite:

designing and executing workflows of Web Services on the desktop, web or in the cloud. Nucleic Acids

Res. Oxford University Press; 2013; 41: W557–61.

Combining clinical and genomics queries using i2b2 – Three methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0172187 April 7, 2017 16 / 16

https://github.com/hms-dbmi/HMS-DBMI-transmartApp
https://github.com/hms-dbmi/HMS-DBMI-transmartApp
https://doi.org/10.1186/s12859-015-0861-0
https://doi.org/10.1186/s12859-015-0861-0
http://www.ncbi.nlm.nih.gov/pubmed/26714792
http://d0.awsstatic.com/whitepapers/aws-overview.pdf
https://doi.org/10.1371/journal.pone.0172187

